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Wrared and Raman spectra were measured for AB,S, spinels (A = Cd, Mg, or Zn; B = SC, Yb, or Tm). 
The four r, ir bands and four of the five (A ,g + E, + 3T,d Raman bands were generally observed. 
Symmetry coordinates were calculated for the spine1 structure and normal coordinates were calculated 
using a model containing four force constants. Good fits of the eight observed vibrational frequencies were 
obtained from four force constants. The tetrahedral stretching constants have values between 1.4 1 and 0.49 
mdyn/A, while the octahedral stretching constants have values between 0.61 and 0.38 mdyn/A. The tetra- 
hedral stretching constant was always larger for Cd compounds than for compounds containing the smaller 
Mg ion in tetrahedral sites, suggesting a measure of the additional stabilization of Cd through covalent 
bonding. Calculated absorbances for the ir transverse mode frequencies were in reasonable agreement with 
experiment and support the four-force-constant model. 

Introduction 

In the past few years there has been an 
increasing interest in the sulfide and selenide 
spinels. Examples of these compounds which 
give good Raman spectra are not very 
numerous, since most have a metallic luster. 
However, infrared spectra of the powdered 
compounds are easily obtained. This paper is 
concerned with the vibrational properties of 
some RE and SC sulfide spinels with the 
general formula AB,S,, where A = Cd, Mg, or 
Zn, and B = Yb, Tm, or SC. It is our intention 
to study the relationship of the vibrational 
spectra of these compounds to their structure 
and composition. The data were obtained from 
powders and the compounds were studied as a 
family. 

*Research supported by the Au Force Cambridge 
Research Laboratories under Contract Fl9628-71-C- 
0232 and by the National Science Foundation under 
Grant EAR 73-00243 AOl. 

j’ Also affiliated with the Department of Geosciences. 

Most previous work concerns the oxide 
spinels and numerous papers have been 
written relating the number and positions of 
bands in the ir spectra to structure and 
composition. Preudhomme and Tarte in an 
important series of papers review most of the 
earlier work (1-4). 

Articles discussing sulfide and selenide 
spinels are primarily concerned with single- 
crystal ir or Raman measurements of just a 
few compounds. However, the powder ir 
spectra of some 14 sulfide spinels have been 
reported by Lutz and Feher (5). Single-crystal 
specular reflectance measurements have been 
made on CdIn,S, (6, 7), CdCrSe, (8, 9), 
CdCr,S, (8), and HgCr,Se, (IO). Single- 
crystal polarized Raman measurements have 
been made on CdIn,S, (II, 12), CdCr,S, (22, 
13), and CdCr,Se, (13). 

Compounds with the spine1 structure have 
the general formula ABJ, (X is either 0, S, or 
Se) with space group Fd3m(03. There are 
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TABLE I 

LATTICE PARAMETERS FOR SULFIDE SPINELS 

Compound 

Measured 
lattice parameter 

a, (4 

Literature values of 
lattice parameters 

Ii a, (4 References 

W%% 10.98 - 10.958 (20) 
MUbS., 10.95 0.377 10.957 WI 
W@G., 10.62 0.383 10.627 (28 
ZnSc,S, 10.48 - 10.483 (20) 
CdTm,S, 11.10 0.25 7? 11.09(2) (22) 
CdYb& 11.07 0.382 11.0684 (24 
CdSc,S, 10.73 - 10.733 (24 

eight formula units in the face-centered cell. 
The 56 atoms in this cell occupy the following 
positions: A, 8a(T,); B, 16d&); and X, 
32e(C,,,). Only the primitive unit cell is 
necessary for a vibrational analysis. There are 
several ways of choosing this cell, but it is of 
no consequence because the vibrational 
analysis yields identical results for any of the 
choices. A factor group analysis of the spine1 
structure (14) predicts the vibrational modes 

r = (A ig + E, + 3 T,J(Raman active) 
+ 4T,,(ir active) + (T,, + 2A,, + 2E, 
f ‘ZT,J(inactive). 

Force constant calculations that have been 
used for spine1 compounds are for the most 
part very simple and employ modifled FG 
matrix calculations (15-Z@. On the other 
hand there has been a rigorous treatment of 
the lattice dynamics of one spine1 MgAl,O, 
(19) which used a rigid ion approximation. 

It is with the Brtiesch and D’Ambrogio 
model (17) that our infrared and Raman data 
are analyzed. This model is applicable because 
the assumptions made in its formulation hold 
true for these covalent sulfides with short- 
range forces. 

Experimental 

The spinels were prepared by sulfurizing the 
sesquioxides and then reacting the ses- 
quisulfldes with the sulfides of the divalent 
metal. It was necessary to use H,S as the 

sulfurizing agent. H,S reacts with the RE 
sesquioxides at temperatures above 1 2bo” C. 
The reaction system consisted of a graphite 
susceptor, containing the oxide, which was RF 
heated in an H,S atmosphere. Samples could 
be heated to above 1300°C and converted to 
the sesquisulfides within half an hour using this 
technique. The subsequent formation of the 
spinels was accomplished by mixing the 
sesquisulfides with appropriate amounts of 
CdS, MgS, or ZnS. The mixtures were then 
fired at 1200°C in evacuated silica tubes. The 
spinels thus formed were characterized by X- 
ray powder diffraction and precise lattice 
parameters were obtained (Table I). 

Infrared spectra of selected spinels were 
measured from 33 to 800 cm-’ on powders 
dispersed in Nujol and spread on polyethylene 
plates. The measurements were made using a 
Beckman IR- 11 spectrophotometer in double- 
beam operation. 

While ionic materials frequently give 
meaningless powder ir spectra, the more 
covalent sulfide spinels seem to give reason- 
ably accurate powder transmission spectra. 
The validity of using powder techniques is 
demonstrated with data for CdIn,S,. Both 
reflectance (6) and powder transmission data 
(5) are available for comparison. Table II 
presents the literature results of far-infrared 
powder transmission and reflectance measure- 
ments. In addition values of u,, the frequencies 
of the reflectance band maxima, are tabulated 
as measured from the single-crystal reflectance 
spectrum. The separation of the transverse and 
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longitudinal modes of CdIn,S, is of the order 
of l-2 cm-’ for the sharp bands and 32 and 
55 am-’ for the intense broad bands. The 
reflectance band with the largest longitudinal 
optic-transverse optic splitting yields the 
transverse mode whose frequency differs the 
most from its position in the powder spectrum. 
This same reflectance band also has the 
highest oscillator strength so that it should give g 
a transmission band in the powder spectrum Z 
which has considerable reflectance character. g 
That the band in the powder spectrum is + 
reflectance-like is indicated by comparing o, to 
the mode frequency u, in the powder spectrum. 
V, is 230 cm-’ while u1 is 23 1 cm-l. 

Raman measurements were made using a 
Spex Ramalog Double Monochromator- 
Spectrometer with an RCA C3 1034 photo- 
multiplier detector with photon counting 
electronics and an excitation source of either a 
Spectra Physics Model 164 Ar+ laser or a 
Model 124A He-Ne laser. Measurements 
were made on pressed pellets of the sulfides 
and the power of the laser beam was kept at a 
minimum to avoid damage to the surface of 
the pellet. The final measurements were made 
with the 15-mW 632.8-nm He-Ne laser. 

Spectra 

Infrared spectra of the thiospinels examined 
are shown in Figs.. 1 and 2; the Raman spectra 
are shown in Figs. 3 and 4. The measured 
fundamental frequencies are compiled in Table 
III. 

FIG. 1. Infrared spectra of the A.%$, spinels (.4 = Cd, 
Zn, W. 

The infrared spectra are typical of spine1 
compounds. There are two very intense broad 
bands and two weaker bands. Sometimes one 
or both of the weaker bands are not observed. 
X-Ray data confirm that the compounds 
studied are normal spinels, so that the spectra 
observed arise from the cation configuration 
given previously. 

The Raman spectra shown in Figs. 3 and 4 
were measured with a He-Ne laser. There 
should be five Raman-active modes. Only four 
fundamental bands are observed consistently 

TABLE II 

COMPARISON OF TRANSVERSE MODE POSITIONS FOR CdIn,S, FROM POWDER TRANSMISSION 
AND SINGLE-CRYSTAL REFLECTANCE” 

Powder transmission (5) 
ut (cm-‘) 

Reflectance (6) 
0, (cm-‘) 
0, (cm-‘) 
0, (cm-‘) 
4nP 
V 

“6 07 US 09 

311 231 170 68 

307 215 171 68 
320 230 170 68 
339 270 172 69 

0.63 5.20 0.5 0.3 
0.02 1 0.020 0.040 0.040 

n v, is equal to the frequency of a reflectance band maximum. 
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FIG. 2. Infrared spectra of the ARE,S, spinels (A = Mg, Cd; RE = Yb, Tm). 

in the spectra of most of the compounds. A 
fifth band appears only in the spectra of 
ZnSc,S, and MgSc,S,, but it is unclear at this 
point if this fifth band is the missing fundamen- 
tal mode. 

The Raman spectra of the cadmium spinels 
excited by the argon laser contain more lines 
than permitted by group theory. The extra 
bands are very strong and dominate the 
spectra of the Cd spinels, while the fundamen- 
tal bands are very weak by comparison. In the 
spectrum of CdYb,S, the extra bands form a 
progression and occur at 300, 600, and 9 15 
cm-r with decreasing intensity. In the 
spectrum of CdTm,S, a strong band occurs at 
301 cm-i with an apparently related band at 
602 cm-’ and again the intensities decrease 
with increasing frequency. Now, however, 
there are other weaker bands situated around 

the 602-cm-’ band. While the non- 
fundamental bands dominate the CdYb,S, 
spectrum, they are minor features in thq 
CdTm,S, spectrum. In the spectrum of 
CdSc,S, a whole new group of bands appears. 
Here a progression seems to be formed by the 
308-, 395-, and 485-cm-’ bands with a 
spacing of -88 cm-‘, but the change h 
intensity is irregular. There is still the same 
progression formed by the 308- and the 602- 
cm-l bands found in the other Cd compounds. 

The extra features in these spectra appear to 
be due to multiphonon processes in traces OB 
free CdS which have been enhanced by a 
resonance effect. Bands at regular intervala 
have been found in the resonance Raman 
spectra of single crystals of CdS at nearly tha 
same positions as for these spine1 compounds 
(23). 
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FIG. 3. Raman spectra of the ASc,S, spinels. Ex- 
citation by 15mW He-Ne Laser. 
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FIG. 4. Raman spectra of the ARE& spinels. 
Excitation by 15mW He-Ne laser. 

The translational symmetry of the lattice 
factors the dynamical matrix into u - 3N x 
3N subblocks where each subblock is labeled 
by one of the u k-vectors that can be assigned 
to the vibrations. The dynamical matrix for a 
particular k-vector can then be described using 
the notation of Born and Huang (24). 

D 

exp [-2x& l x(V)], (1) 

Symmetry Coordinates for the Spine1 Stcuc- 
iurc 

@uP (2) 

The dynamical matrix used to describe the where ~fi = x,y,z; k, k’ = 1,2,. . .,N, 1’ = 
vibrational properties of crystals has dimen- 0, 1,. . ., CT. a and p define the directions of 
sions 3Nu x 3Nu, where N is the number of displacement, k and k’ are the labels of the 
atoms in a primitive unit cell and u is the primitive unit cell, and I’ is a label for the 
number of primitive unit cells in the crystal. different unit cells. In the above equations @ is 

TABLE III 

RAMAN AND INFRARED MODES FOR TWOSPINELS 

CdSc,S, - 368 218 - 265 99 361 215 240 89 
ZnSc,S, 413 315 220 - - - 375 273 - 112 
WW, 490 365 216 - - 155 380 270 320 133 

CdY& - 350 204 - 251 96 295 214 152 72.5 
CdTm,S, - 350 215 - 259 95 300 214 151 73 
MUV, - - - 344 202 - 261 320 211 230 
MgTm,S, - 349 217 - 274 - 320 208 232 - 
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the crystal potential, x(P) is a lattice vector 
which connects unit cells I’ and the 0. mk and 
mk, are the masses of atoms k and k’, and 
U,(C) is the displacement of atom k of the Z’th 
unit cell in the a direction. @,&,) is just the 
negative of the force on atom k in the zeroth 
unit cell in the a direction due to a unit 
displacement of atom k’ in the 1’ cell in the p 
direction, However, these general expressions 
can be simplified if one is interested in 
first-order ir absorption and Raman scattering 
where k ?Z 0. 

The dynamical matrix describing the op- 
tically active vibrations at k g 0 is 

D 

The determinant of the dynamical matrix must 
equal zero if nontrivial solutions to the 
vibrational secular equations exist. Thus 

v is in units of cm-‘. If D is the dynamical 
matrix and E is a unit matrix then the above 
equation can be written as ID - w*E I = 0. 

The Wilson FG matrix formalism as ex- 
tended to crystals by Shimanouchi et al. (25) 
has the same form as the dynamical matrix: 
I FG - w*EI = 0, D = FG. Here F is a matrix 
dependent on the force field and G is a matrix 
dependent on the structure of the crystalline 
solid and the masses of the constituent atoms. 
Briiesch and D’Ambrogio (17) used this 
formalism for calculating the dynamical 
matrix of sulfide and selenide spinels. 

The dynamical matrix at k E 0 can be 
factored by combining the 3N displacement 
coordinates into 3N orthogonal symmetry 
coordinates. The symmetry coordinates form 
basis vectors of the different irreducible 
representations of the point group of the 
crystal. The subblocks of the factored 
dynamical matrix are in turn completely 
diagonalized by the normal coordinates to 
yield the squares of the vibrational frequencies. 
The normal coordinate Q$ belongs to the dth 

irreducible representation of the point group of 
the crystal, is g-fold degenerate, and has m 
distinct frequencies associated with it. Qfi is 
formed by combining the symmetry coordin- 
ates S$ according to the equation 

Q:, = ,f Wn,j) S$, 
J=I 

i=l,2 ,..., g,n=l,2 ,..., m. (5) 

The quantities bd(n,J3 are related to the 
amplitudes of vibration for the different atoms 
in the unit cell and are determined by the 
values of the force constants and the force field 
chosen. They are, however, uniquely deter- 
mined by symmetry and are independent of 
the force constant when there is only one 
frequency in a particular irreducible represen- 
tation. 

The 42 symmetry coordinates for the spine1 
structure were derived using the Worlton- 
Warren computer program (26). Because only 
the zone center phonon frequencies are 
needed, the input into the program is just the 
atomic positions in the primitive unit cell, the 
characters of the irreducible representations of 
the 0, point group, and the diagonal matrix 
elements from all the degenerate irreducible 
representations. 

The diagonal matrix elements for the ir- 
reducible representations were obtained by 
deriving the appropriate coordinate transfor- 
mation matrices. These matrices were 
generated by forming the direct product 
representations of Td and Ci, 0, = Ci @ T& 
The different matrix representations for the 
operations of Td were generated using the 
basis functions listed in the point group 
character tables (27). The irreducible represen- 
tations for the different operations of the point 
group Ci (E and i) are just the characters in 
the point group table, since the irreducible 
representations are all one-dimensional. 

The symmetry coordinates for the Raman 
and ir-active modes of the spine1 structure are 
listed in Table IV. A complete list is given in 
(17). There are a total of 42 symmetry 
coordinates corresponding to the 3N degrees 
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TABLE IV 

SYMMETRY COORDINATES FOR THE RAMAN AND INFRARED MODES OF THE SPINEL STRUCTURES~ 

Sf;l= 1/(6”22)(x, + y, + z, + xg -ye - zg - x9 + y, - zg - x,~ - YIO + ZIO - x11 -Y,, - ZIL 

-x12 + Y,, + 212 + x13 -Y,, + 213 + x14 + Yl, - z1.J 

Sff= 1/(3,/24)(x, +y,- 22, +x,-y,, + 22,-xX, +y, + 2z,-x,,-y,,-2z,,-x,,-y,, + 2z,, 
- x12 + Y,, - 2% + x13 -Y13 - 2213 + x14 + Y14 + 2%) 

~~~=~/4(~,-Y,+~,+Y,--x,-Y,--x,o+Y,o-~,l+Y,l--l,-Y,,+~l3+Y,3+x,,-Y,,) 

syp = 1/2”vy, - y*) 

ST?= ~/(2”~2)(Y,+Y,+Y~+Y~~-Y~~-Y~,-Y,~-Y~,) 
sp= 1/4(x, + z, - xs + zs - xg - zg + x,o - z,o - x,, - z,, + x,2 - .z,* + Xl3 + z,3 - x,, + z,J 

sy? = 1/27x, - x2) 

S$= 1/(2”*2)(x, + x* + xs + x 10 - x11 -x12 - x13 -x14) 

S:,‘I=1/4(y,+z,-y,-z,-y,+z,+y,,- z10 - Yll - 211 + YlZ + ZlZ + Yl3 - ZI3 -Yu + 5,) 

ST?= l/292, - ZJ 

sy3*= l/(2,/22)(2, + zg + zg + z,. - z,, - z,* -2,x - z,J 

ST?= 1/4(x, + Y, - X8 + Ys + X9-Y, - x10 -Y,o - x11 -Y11 + x12 -Y12 - x13 + Yl3 + x1.4 + Y14) 

sp= 1/2,‘2(x, + x*) 

sp= 1/2(x, + x1 + x5 + Xa) 

sy/u = ll(2”*2)(y3 + zj - y, - 24 - y, + Z) + y, - ZJ 

sp= 1/(2”22)(x, + X8 + x9 + Xl0 + Xl1 + Xl2 + x,3 + x,J 

s:/u= 1/4(Y, + z7 -YS - z8 -Y9+ z9 +Y,,- z10 +y,, + ‘11 -Y12- z12-Y13 + z13 + Y14-‘14) 

sy,l*= 1/29y, + y*) 

syp= l/2(& + y  + y  + Ya) 4 3 
sgu = 1/(2,/22)(x3 + z3 - x, + z4 -x5 - z5 + X6 - ZJ 

s:j”= 1/(2“22)(Y, + YS + Y, + YlO + Ytl + Y,, + Y,, + Yl4) 

syp= 1/4(x, + z, - X8 + zg - x, - zg + XI0 - z,o + x,, + z,, -x,* + z,r - x,r - z,3 + x,4 - z,J 

syp = l/2,/2(2, + ZJ 

s;p = 1/2(z, + zq + z5 + Z6) 

sp= 1/(21/22)(x, + y, - x, + y, + x5 - y, - X6 - y& 

s:;u= 1/(2,‘22)(z, + Z8 + z9 + ZIO + z,, + z,* + Z,J + ZJ 

s:;” = 1/4(x, + Y, - x8 + Y, + x9 - Y9 - x1O - Y,, + xl1 + Y,, - x12 + Y12 + x13 -Y,, - xI4 -&.I) 

LI S$ represents the symmetry coordinates where i = 1, 2, . . , g;j = 1,2, . . ., m. This symmetry coordinate is the ith 
member of the jth degenerate set forming a basis for the dth irreducible representation. Coordinates grouped 
close together in the table are those which must be combined to form normal coordinates. The components are 
numbered 1, 2 = tetrahedral cations; 3-6 = octahedral cations; and 7-14 = anions. Within each equipoint, the 
atoms are numbered in the same order as they are listed in the International Tables for Crystallography. 

of freedom (N = 14 for spinel). The displace- the tetrahedral ions, A; 3 to 6 label the octa- 
ment coordinates xp y,, and zi are mass- hedral ions, B; and 7 to 14 label the anions. 
weighted Cartesian coordinates and are paral- The numbering scheme corresponds to the 
lel to the (lOO), (OlO), and (001) axes of the listing of equipoints given in the International 
face-centered cell. The subscripts 1 and 2 label Tables for Crystallography. Each symmetry 
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coordinate forms a 1 x 42 column vector in 
which most entries are zero. 

When more than one mode belongs to a 
symmetry species, the symmetry coordinates 
must be combined to form normal coordinates. 
The coefficients used to form the combinations 
depend on the details of the dynamical 
equations. The Raman-active Tzg normal 
coordinates are a combination of three sym- 
metry coordinates, while the infrared-active 
T,, normal coordinates are a combination of 
five symmetry coordinates. However, for those 
symmetry species with only one mode, the 
normal coordinates are just equal to the 
symmetry coordinates. In Table IV symmetry 
coordinates which are to be combined to form 
normal coordinates are grouped together. The 
number of symmetry coordinates within a 
group is equal to the number of distinct modes 
predicted by the factor group. The number of 
groups listed with a certain symmetry is equal 
to the degeneracy of the symmetry species. 

Mode Assignments 

The Raman-active modes do not involve 
motions of the octahedral cations because 
these cations are located on the centro- 
symmetric 16d sites. The Raman modes for 
spine1 compounds are of g character and must 
preserve the center of symmetry. The A,, Eg 
and Tzg symmetry coordinates in Table IV 
have no displacement coordinates for the octa- 
hedral cations. In addition, consideration of 
the symmetry coordinates of the A,, and E, 
modes shows that these modes involve 
motions of only the sulfur atoms so that these 
frequencies are unaffected by the masses of 
both the octahedral and tetrahedral cations. 
The three &* modes are the only modes whose 
frequencies should be functions of the tetra- 
hedral atom masses. 

Table III shows that u, and u, are the modes 
most strongly affected by changing the tet- 
rahedral cation mass. When the mass of the 
tetrahedral cation is changed from 112.4 to 
24.312 amu by substituting a Mg for a Cd 

atom in the SC spinels, a5 shifts from 99 to 155 
cm-‘. One cannot say anything about the 
change in frequency of v, for the SC spinels 
since this band is only observed in the Raman 
spectrum of CdSc,S,. However, u, is observed 
in all the Raman spectra of the RE spinels and 
there is a change of 16 and 15 cm-’ for the Yb 
and Tm spinels, respectively, when Mg is 
substituted for a Cd cation. The low-frequency 
mode u5 is only observed for the Cd-RE 
spinels and a comparison cannot be made. 
These must be two of the Tzg modes. Assign- 
ment of the Tzg modes to individual symmetry 
coordinates is not possible because of the 
necessity of forming linear combinations of 
symmetry coordinates belonging to the Tzg 
irreducible representation with coefficients 
which depend on the force constants. 

ai and v2 are not functions of the tetra- 
hedral cation mass. Both are related to 
changes in the interatomic distances and unit 
cell volumes. This can be seen by plotting unit 
cell volume versus the u, mode frequency (Fig. 
5). In general, as the unit cell volumes and the 
interatomic distances increase through the 
series of compounds, a, decreases in fre- 
quency. Because u, and v2 depend mainly on 
interatomic distances and the interatomic 
forces and are independent of the tetrahedral 
cation masses, one must be the A ,g mode while 
the other must be the E, mode. Examination of 
the symmetry coordinates for the A,, and Eg 
modes in Table IV shows that the A,, normal 
coordinate describes a stretching motion while 
the Eg normal coordinate describes a bending 
motion. Stretching modes generally have 
higher frequencies than bending modes. Ten- 
tatively, then, a2 is assigned as the Eg mode 
while u, is assigned as the A,, mode. 

These assignments are in good agreement 
with the assignments obtained from single- 
crystal spectra of CdIn,S, (II) and CdCr,S, 
(17). 

Assignment of the infrared modes to specific 
normal coordinates is more difficult because 
all five ir modes (including the zero-frequency 
acoustic mode) belonging to the T,, represen- 
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FIG. 5. Relation of o1 frequency to volume of spine1 cell. 

tation. The actual normal coordinates, when a 
model of the force field is included, will consist 
of linear combinations of symmetry coordin- 
ates. Some insight, however, can be obtained 
by examining the way in which the ir frequen- 
cies vary with spine1 composition. 

Figure 6 is a plot of mode frequency versus 
the square root of the mass of the A cation, 
rny2, for the four ir bands of the ASc,S, 
compounds. Figure 6 demonstrates that two of 
the modes are independent of the tetrahedral 
cation mass while the other two bands are 
sensitive functions of the tetrahedral cation 
mass. The lowest-frequency band varies 
linearly with rnit2. A similar observation has 
been made about the variation of the spectra 
of the Cd and Hg chromium selenide spinels 
(10). The weak band at 240 cm-’ in the 
CdSc,S, spectrum shifts to 320 cm-’ in the 
MgSc,S, spectrum but the band was not found 
in the ZnSc,S, spectrum. The variation is 
marked with a dashed line, which suggests that 
this mode would directly overlap another band 
in ZnSc,S,, where only three ir bands are 
observed. 

FIG. 6. Relation of the infrared-active modes to mass 
of the tetrahedral cation, mA. 

Next consider the infrared spectra of the 
ARE,& compounds, where A = Cd or Mg and 
RE = Yb or Tm. Only three of four fundamen- 
tal modes occur consistently in all spectra. The 
weak band at 73 cm-’ in the Cd-RE spinels 
does not appear in the Mg-RE spinels. A 
comparison of band positions is given in Table 
V. Both the magnitudes and the directions of 
the shifts are identical even though the actual 
band positions are markedly different for these 
compounds. 

Finally, consider the effect of changing the 
octahedral cation from SC to an RE ion while 
keeping all the other ions the same. Table VI 
compares the frequencies of the four bands in 
the CdTm,S, and CdSc,S, spectra. There is a 
large change in the band position for the three 
higher bands, while the low-frequency band 
is insensitive to the octahedral cation mass. 
The low-frequency band shifts from 73 cm-r 
in the CdTm,S, spectrum to 89 cm-l in the 
CdSc,S, spectrum. Only a 16-cm-’ shift 

TABLE V 

COMPARISON OF INFRAREDBANDSHUTS FORRE ANDSCSPINELS 

“8 
“7 
“6 

CdTm,S, MgTmA A CdSc,S, M@c,S, A 

151 232 81 240 320 80 
214 208 -6 215 270 -5 
300 320 20 361 380 19 
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TABLE VI 

COMPARISON OF BAND POSITIONS IN THE SPECTRA OF 
CdTm,S, AND CdSc,S, 

CdTm,S, CdSc,S, A 

09 13 89 16 

08 151 240 91 

“1 214 275 61 

O6 300 361 61 

occurs even through Tm is 3.76 times more 
massive than SC. 

Some conclusions can now be drawn about 
the atomic motions which lead to the four 
bands found in the thiospinel spectra. o, 
primarily involves movements of the tetra- 
hedral cation while o, and u, are vibrations 
involving mainly the octahedral cations. c8, 
however, corresponds to a mode involving 
both the tetrahedral and octahedral cations as 
evidenced by its sensitivity to changes in both 
the octahedral and tetrahedral cation masses. 

Force Constants for Sulfide Spinels 

The force constant models that have been 
proposed for spine1 compounds range in 
complexity from the FG matrix type, in which 
only nearest-neighbor interactions are 
included, to the lattice dynamic calculations, in 
which a rigid ion approximation with long- 
range coulombic forces are used. A model 
containing four force constants was previously 

TABLE VII 

FORCE CONSTANTS FOR THE SULFIDE SPINELS 
(mdyn/A) 

Compound f, f* 

CdIn,S, 1.03 0.0198 

CdSc,S, 1.41 0.029 

W%% 0.738 -0.0066 

CdYbS, 0.938 0.042 
W9’bS, 0.516 0.055 

CdTm,S, 0.948 0.040 
MgTm,S, 0.495 0.059 

a 1 mdyn/A = 1O-2 N/m. 

f3 f, 

0.602 0.0342 

0.607 0.036 
0.573 0.105 

0.562 0.04 1 
0.335 0.122 

0.582 0.042 
0.380 0.120 

used (17) to calculate the force constants and 
normal modes for CdCr,Se, and CdCr,S, with 
good success. 

The Briiesch and D’Ambrogio model cons- 
ists of the following four force constants: a 
tetrahedral stretching force constant& a tetra- 
hedral angle bending force constant f2, an 
octahedral stretching force constant fj, and 
an octahedral angle bending force constant 
f4. Because u N d for most sulfide spinels 
(Table I) this value was used to derive the 
dynamical equations. The equations are very 
simple and there is only one unique tetra- 
hedral and octahedral angle for this value of 
the u parameter. See the original reference (I 7) 
for the specific form of the secular equations. 

Force constants and normal coordinates 
were calculated for the sulfide spinels by an 
iterative procedure. The calculation was per- 
formed using the VA04A minimization sub- 
routine (Harwell Subroutine Library) and the 
force constants were varied until observed and 
calculated frequencies agreed and the function 

R= +(~)2]2 (6) 

was minimized, where i labels the data points. 
Force constants and normal coordinates are 

listed in Tables VII and VIII. Nine modes were 
predicted from four force constants with an 
error no greater than 13%. In Table VIII both 
calculated and observed frequencies are listed 
along with the amplitudes of the symmetry 
coordinates that combine to form the normal 
coordinates. The normal coordinate Q, corres- 
ponds to the mode frequency o, listed in Table 
III. T, is one of the three degenerate acoustic 
normal coordinates. It was simplest to label 
the normal coordinates this way, rather than 
according to Eq. (5). The amplitudes are the 
bd(n,j) from Eq. (5) and are listed under the 
column labeled Normal Coordinates. The 
quantities S$ are the symmetry coordinates 
listed in Table IV for the dth irreducible 
representations. While the b’s are the 
amplitudes of the symmetry coordinates they 
are not the actual atomic amplitudes. The 
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atomic amplitude of atom k in the x, y, or z and D’Ambrogio model in yet another way. 
direction is obtained by dividing bd(n,j) by Observed and calculated absorption 
rni’* and multiplying the resulting quantity by coefficients can be Compared where the Cd- 

the normalization constant of the symmetry culated values of the absorption are based on 
coordinate S$ and the weighting factor of the the force constant model. 
mass-weighted displacement coordinates xk, The absorption of light which passes 
y,, or zk in S$. through a crystal is expressed as a(o), the 

The bending is substantially stronger in the absorption coefficient. If the absorption is a 
SC compounds as opposed to the RE com- delta function, then there is only the possibility 
pounds for both Mg and Cd compounds. This of a vibrational transition at the transverse 
is directly reflected by the substantially larger mode frequency v,. While the above equality is 
force constants in the SC compounds. The not strictly true for real crystals in which the 
comparison must be drawn between com- vibrations are damped it is often a good 
pounds with the same tetrahedral cation. On approximation. a(vj) can be expressed as (28) 
the other hand the stretching force constants 
for Cd compounds are always larger than the 40,) = g vj 1 (&I*, I29 (7) 
force constants for Mg compounds when the 
octahedral cation is kept constant. There is a wo.j= (WolPI v,>. (8) 
larger change in the tetrahedral stretching 
force constant& as opposed to the octahedral 

The vertical brackets indicate that the 

stretching force constant f3 when a Cd ion is 
magnitude of the vector is being taken. The 
d’ ipo e 1 

substituted for a Mg ion. This is particularly 
moment transition probability (,u),,~ is 

f rom 
noticeable for the SC and Tm spinels. This 

the ground state to the jth vibrational 

increase in the force constants for the Cd 
state. If only the jth mode is stimulated then 

compounds occurs despite the fact that Mg iS 
the dipole moment can be expanded in terms 

a smaller cation than Cd. One possible 
ofits normal coordinate Q? Thus 

explanation is that Cd is more covalent and 
there is a short-range stabilization of the Cd 

P(Qj)=Po+ (d,oQj+ (2) ,Qf+ **** 

ion in the structure compared with the more (9) 
ionic Mg. If we only use the linear terms in the expansion 

One cannot distinguish between internal we obtain the 
(molecular type) and external modes for these 

sulfide spinels. The ir T,, and the Raman- 
the magnitude 

active T,, normal coordinates are formed from 
probability: 

I 

following for the square of 
of the transition moment 

a combination of all the symmetry coordinates 
in the respective irreducible representations 

1 MQ,)),., I* = 

and the weighting factors are of comparable 
magnitude. A distinction between internal and 
external modes can only be made for the spine1 
compounds if the tetrahedral bond strength is 
much greater than the octahedral bond 
strength, which Table VII indicates is not the 
case. The induced dipole moment in terms of mass- 
Intensity Calculations weighted displacement coordinates is given as 

Aside from comparing observed and cal- (11) 
culated frequencies, one can test the Briiesch 
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The transformation from mass-weighted dis- 
placement coordinates to normal coordinates 
is given by 

(12) 

u = c c -$ e(ka,jlO)Qj, (13) 
km / 

d/t 

i@=k, i mf’ cc 
-k e(ka,j I O), (14) 

Thus if we know the electrostatic charge ck on 
atom k and the vibrational amplitude of atom 
k in the a direction in the&h normal mode we 
can calculate the absorption cz(u,). 

Using Eq. (15) it is now possible to calculate 
the absorption by a particular mode using the 
calculated normal coordinates of the Briiesch 
and D’Ambrogio model. This was done for 
CdIn,S, where the calculated values could be 
checked against the experimental values for 
the four ir modes (Table IX). Because the 
absorption coefficient contains constants and a 
scaling parameter which scales the ionic 
charges (the scaling parameter is used to 
maintain charge neutrality and because the 
absolute charges on the individual ions are not 
known), the results are presented in the form 
of relative absorptions, a,,,(~,). Note that Eq. 
(15) yields zero intensities for all the Raman 
modes and the acoustic modes as it must. 

Calculated relative absorbance intensities 
for the spinels examined in this study are given 
in Table X. The results of the calculation 

TABLE IX 

CALCULATED AND OBSERVED RELATIVE ABSORPTIONS 

OF THE INFRARED BANDS OF CdIn,S, 

68 0.0108 0.0255 
171 0.0830 0.00773 
215 1.00 1.00 
307 0.529 0.664 

TABLE X 

CALCULATED VALUES FOR THE RELATIVE 

ABSORPTIONS FOR SULFIDE SPINELS 

Compound a,, (45) a&J %, w ar,,W 

CdTm,S, 0.702 1.00 0.006 1 0.014 
CdYb,S, 0.700 1.00 0.0072 0.012 
CdSc,S, 0.720 1.00 0.034 0.03 1 
WTmA 1.00 0.016 0.448 0.0027 
MCG$ 1.00 0.016 0.512 0.0059 
M&S, 1.00 0.0065 0.371 0.066 

indicate that for the Cd spinels there should be 
two very intense ir bands at high frequencies 
and two rather weak ir bands at low frequen- 
cies. The qualitative agreement with the 
observed powder spectra is good. The agree- 
ment for the Mg spinels is less satisfactory, 
perhaps partly because of overlapping bands, 
which violates an assumption made in deriving 
Bq. (15). Thus the model uses four force 
constants to predict with reasonable precision 
not only the frequencies of nine modes, but 
also the intensities of the four ir modes. 
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